Energy-Water Nexus Spans Across Western United States

Via EDF, an interesting look at the watergy nexus across the western U.S.:

Source: feww.wordpress.com

Over the past few weeks, I’ve written a number of posts to help shed light on the fundamental connection between energy and water. Because many of our energy sources gulp down huge volumes of water, it’s imperative that we break down the long-standing division between energy and water planning — especially in drought-prone states like Texas. I’d like to take a step back and look at how Texas’ neighbors are addressing energy and water co-management. While Texas may be an extreme example, looking toward its immediate neighbors could provide ideas and best practices to improve the state’s situation.

A number of western states are facing many of the same challenges as Texas. Electricity production is a major drain on the region’s water supply. A study co-authored by Western Resource Advocates and EDF showed that thermoelectric power plants, such as coal, natural gas and nuclear, in Arizona, Colorado, New Mexico, Nevada and Utah consumed an estimated 292 million gallons of water each day in 2005 — roughly equal to the amount of water consumed by Denver, Phoenix and Albuquerque combined (and we’re talking water consumption, not just withdrawals). Like Texas, the western states face a future of prolonged drought. Scientific models predict climate change will increase drought throughout the Southwest, placing greater stress on the region’s delicate water supply.

Additionally, electricity production, numerous thirsty cities and widespread agricultural activity all strain the water system, too. Because so many flock to western states for fishing, kayaking, rafting and other recreational water activities, setting the region’s water system on a sustainable path is a critical economic issue. The exceptional challenges facing western states have already prompted some states to consider the energy-water nexus when planning to meet future water and electricity needs.

Arizona

Palo Verde Nuclear Center. Source: SouthwestClimateChange.org

Palo Verde Nuclear Center. Source: SouthwestClimateChange.org

Arizona is at the forefront of innovative co-management policies that address the energy-water nexus. The Arizona Corporation Commission (ACC), the state agency charged with regulating electricity, has considered water in its electric resource planning for over ten years — and as we have acknowledged before – water use is no small consideration. The agency has gone so far as to deny permits for proposed natural gas power plants partially due to their impact on groundwater supplies. The ACC has also ordered Arizona Public Service (APS), the state’s largest and longest-serving electric company, to consider building new solar farms, specifically noting solar energy’s low-water needs. To APS’ credit, the company has reported water consumption for its energy portfolio since 2009, although water has been a factor in energy planning for far longer than that. Since the 1980s, the Palo Verde nuclear plant has used treated wastewater from the city of Phoenix rather than fresh water, successfully offsetting 20 billion gallons of fresh water consumption each year.

One of Arizona’s largest utilities, the Salt River Project (SRP), provides both water and electricity services to the Phoenix metropolitan area. Oddly enough, SRP considers water in its electric planning, but does not consider electricity in its water planning. In its electric planning, SRP estimates the monetary and social costs of new water supplies needed for power plants, but doesn’t consider the explicit economic value of the water resource itself. Thus, despite SRP’s admirable work on the energy-water nexus, it’s not looking at the full picture.

While the electric side of the equation is making strides to bridge energy and water planning, the water side is farther behind. An illustrative example is the Central Arizona Project, a 336-mile aqueduct that delivers 500 billion gallons of water per year to Tucson and Phoenix. In addition to being the largest and most expensive aqueduct system ever constructed in the United States, it is also the leading electricity user in Arizona. Each year, the aqueduct uses 2.8 million megawatt-hours of energy (about a quarter of the energy produced by a coal-fired power plant) to move water across the desert and up mountains.

Some areas of Arizona are working to reduce water’s enormous energy footprint. For instance, the City of Tucson has a robust water recycling program. By using recycled water rather than drinking water for irrigation, the city saves enough water to provide for over 60,000 families each year, reducing the city’s reliance on more energy-intensive freshwater supplies.

Colorado

Colorado is another state working to unite energy and water planning. The state’s renewable portfolio standard, passed by voters in 2004, highlights renewable energy’s smaller water footprint. The state also encourages the Colorado Public Utilities Commission (PUC) to consider water resources in its electric planning and to include water usage when evaluating permits for new power plants. For the past three years, the state has required utilities to report water withdrawal and consumption information for all of their power plants.

Notably, it seems Colorado policymakers have realized the energy-water nexus is a two-way street. In addition to the state’s electric sector considering water use, the state’s water planners intend to include a segment on the energy-water nexus in their upcoming state water plan. Some Colorado cities have even stepped up to address the challenge.

Fort Collins quantified its greenhouse gas (GHG) emissions as part of its Climate Action Plan and, in the process, discovered that 26% of the city’s GHGs came from its water and wastewater facilities. Within two years, city officials were able to reduce electricity use for water and wastewater by over 7%. Having a comprehensive climate action plan that acknowledges the connection between energy and water enabled city planners to identify novel energy savings and tackle the energy-water interconnection head on.

While all of the western states are threatened by the effects of climate change and the energy-water nexus, some states are doing more to prepare than others. Western states should look to regional leaders, like Colorado and Arizona, as they develop policies to address this imminent challenge. Texas can learn from what other states in the West are doing. Our water and electricity planners should be looking at each other’s sectors as a matter of course and adopting innovative solutions that reduce energy’s water needs and water’s energy needs for a sustainable future—solutions I plan to investigate in my next post.



This entry was posted on Thursday, August 22nd, 2013 at 9:08 pm and is filed under Uncategorized.  You can follow any responses to this entry through the RSS 2.0 feed.  You can leave a response, or trackback from your own site. 

Leave a Reply

You must be logged in to post a comment.


About This Blog And Its Author
As the scarcity of water and energy continues to grow, the linkage between these two critical resources will become more defined and even more acute in the months ahead.  This blog is committed to analyzing and referencing articles, reports, and interviews that can help unlock the nascent, complex and expanding linkages between water and energy -- The Watergy Nexus -- and will endeavor to provide a central clearinghouse for insightful articles and comments for all to consider.

Educated at Yale University (Bachelor of Arts - History) and Harvard (Master in Public Policy - International Development), Monty Simus has held a lifelong interest in environmental and conservation issues, primarily as they relate to freshwater scarcity, renewable energy, and national park policy.  Working from a water-scarce base in Las Vegas with his wife and son, he is the founder of Water Politics, an organization dedicated to the identification and analysis of geopolitical water issues arising from the world’s growing and vast water deficits, and is also a co-founder of SmartMarkets, an eco-preneurial venture that applies web 2.0 technology and online social networking innovations to motivate energy & water conservation.  He previously worked for an independent power producer in Central Asia; co-authored an article appearing in the Summer 2010 issue of the Tulane Environmental Law Journal, titled: “The Water Ethic: The Inexorable Birth Of A Certain Alienable Right”; and authored an article appearing in the inaugural issue of Johns Hopkins University's Global Water Magazine in July 2010 titled: “H2Own: The Water Ethic and an Equitable Market for the Exchange of Individual Water Efficiency Credits.”