The Coming Clash Between Water and Energy

As very ably reported in IEEE’s Spectrum magazine, there is a coming clash between energy and water.  We are seeing the early indicators of this in situations such as the debate about ethanol’s viability given its enormous water footprint or the discussion over the extraction of petroleum from northern Alberta’s oil sands at the expense of freshwater lakes in the area.  Examining this clash is the purpose of this blog.  And, as Spectrum notes, the impending tension/clash is likely to increase in the months ahead:

“…Consider a giant sponge, with limbs and tentacles that reach to the horizon. It dips into distant rivers, it delves for deep waters, it digs ditches to catch the rain—all to slake its insatiable thirst.

Clearly, this is no ordinary sea creature quietly snuffling the currents. We have met this sponge, and it is us. We humans are the thirstiest of creatures, and we’ve developed a nearly insatiable taste for this simple but delectable arrangement of hydrogen and oxygen atoms. But we need more. So much more.

We’re not talking about just drinking or bathing. Without water, we’d have practically no energy. Without energy—and therefore cars, planes, laptops, smartphones, and lighting—we wouldn’t be doing much.

In almost every type of power plant, water is a major hidden cost. Water cools the blistering steam of thermal plants and allows hydroelectric turbines to churn. It brings biofuel crops from the ground and geothermal energy from the depths of the Earth. Our power sources would be impotent without water.

Don’t believe us? Plug your iPhone into the wall, and about half a liter of water must flow through kilometers of pipes, pumps, and the heat exchangers of a power plant. That’s a lot of money and machinery just so you can get a 6–watt-hour charge for your flashy little phone. Now, add up all the half-liters of water used to generate the roughly 17 billion megawatt-hours that the world will burn through this year. Trust us, it’s a lot of water. In the United States alone, on just one average day, more than 500 billion liters of freshwater travel through the country’s power plants—more than twice what flows through the Nile.

Look at it another way. Robert Osborne, an enterprising water blogger, calculates that a single Google search takes about half a milliliter of water. Just a few drops, really. But the 300 million searches we do a day take 150 000 liters. That’s a thousand bathtubs of water to power the data centers that handle the world’s idle curiosity. We challenge you to find an activity more trivial than a search engine query.

With that much water needed for even the most trifling tasks, the natural question becomes: How does that water reach those data centers, let alone the world’s farms and factories? By using energy, of course.

We burn through entire power plants’ worth of output to move water from one river—the Colorado—to bring deserts into bloom. On India’s rice paddies, gigawatts of subsidized electricity have fueled an agricultural bonanza but have also induced farmers to pump the groundwater almost down to zero. In China, oversized infrastructure schemes are diverting rivers to the parched industrial cities of the north. On Australian farms, the shift to drip irrigation is saving water but boosting electricity usage.

The era of easy energy and plentiful water is ending; a new way of husbanding these resources must begin. Two islands stand out as compelling test cases. In Malta, a smart grid will monitor both water and electricity to elucidate the connections between the two. And Singaporeans have learned to accept the fact that their urine—treated and cleaned up, of course—is now part of what emerges from the tap.

Are these the kinds of solutions we need to keep the human machine and all its thirsty tentacles sated? We think they’re a start. How we plan—or fail—to resolve the competition between water and energy needs will become one of the defining issues of this century.”



This entry was posted on Monday, September 6th, 2010 at 4:12 pm and is filed under Uncategorized.  You can follow any responses to this entry through the RSS 2.0 feed.  You can leave a response, or trackback from your own site. 

Leave a Reply

You must be logged in to post a comment.


About This Blog And Its Author
As the scarcity of water and energy continues to grow, the linkage between these two critical resources will become more defined and even more acute in the months ahead.  This blog is committed to analyzing and referencing articles, reports, and interviews that can help unlock the nascent, complex and expanding linkages between water and energy -- The Watergy Nexus -- and will endeavor to provide a central clearinghouse for insightful articles and comments for all to consider.

Educated at Yale University (Bachelor of Arts - History) and Harvard (Master in Public Policy - International Development), Monty Simus has held a lifelong interest in environmental and conservation issues, primarily as they relate to freshwater scarcity, renewable energy, and national park policy.  Working from a water-scarce base in Las Vegas with his wife and son, he is the founder of Water Politics, an organization dedicated to the identification and analysis of geopolitical water issues arising from the world’s growing and vast water deficits, and is also a co-founder of SmartMarkets, an eco-preneurial venture that applies web 2.0 technology and online social networking innovations to motivate energy & water conservation.  He previously worked for an independent power producer in Central Asia; co-authored an article appearing in the Summer 2010 issue of the Tulane Environmental Law Journal, titled: “The Water Ethic: The Inexorable Birth Of A Certain Alienable Right”; and authored an article appearing in the inaugural issue of Johns Hopkins University's Global Water Magazine in July 2010 titled: “H2Own: The Water Ethic and an Equitable Market for the Exchange of Individual Water Efficiency Credits.”